Technology Products of the PHAiRS REASoN Project – Year 2 Web Services and Demonstration Interfaces Development

Karl Kent Benedict, Sr. Research Scientist William Hudspeth, GIS Analyst

Earth Data Analysis Center University of New Mexico

ESTC 2006 College Park, MD

Presentation Outline

- Overall Project Goals
- Year I Foundation
- Year 2 Accomplishments
 - Services Oriented Architecture
 - Demonstration Interface
- Future Developments

Enhance public health decision-making through the delivery of relevant information to public health officials through existing decision support systems.

Enhance public health decision-making through the delivery of relevant information to public health officials through existing decision support systems.

 The specific domain of this project is public-health, but the project's products and services may be reused in other application contexts

Enhance public health decision-making through the delivery of relevant information to public health officials through existing decision support systems.

- The specific domain of this project is public-health, but the project's products and services may be reused in other application contexts
- The information provided by this project includes:
 - PM_{2.5} and PM₁₀ particulate forecasts, generated by the DREAM model, and improved through the integration of NASA data into the model
 - Ground measurement data from the EPA AIRNOW network
 - Analytic results in support of effective summarization and analyses useful to the public health community

Enhance public health decision-making through the delivery of relevant information to public health officials through existing decision support systems.

- Development of a Services Oriented Architecture that supports the delivery of products that may be embedded into existing decision support systems.
 For example:
 - Rapid Syndrome Validation Project (RSVP) Sandia
 National Laboratories
 - Syndrome Reporting Information System (SYRIS) ARES Corporation

Year I Foundation

- The first year of technology development for the PHAiRS project emphasized the following:
 - Data acquisition and processing
 - Sample product generation
 - Basic online analytic tools
 - Version I of the client interface that illustrates the various data and analytic capabilities of the application framework

Year 2 Accomplishments

- Year 2 of the PHAiRS project builds on the first project year by producing a Services Oriented Architecture (SOA) that consists of:
 - Enhanced raster and vector data management capabilities
 - Integration of sample products of the DREAM model into the visualization and analysis system
 - Analytic tools as SOAP services that may be called either from the demonstration interface or from other clients (i.e. DSSs)
 - Time-enabled OGC Web Map Services developed as part of the overall services oriented architecture
 - A demonstration interface that exemplifies how the developed services may be deployed within a web client

Overview

Data Management and Processing

- External Data/Service Providers
 - OGC Enabled: DataFed
 - Non-OGC: NOAA/NWS, Land-Process DAAC
- Automated data acquisition through scheduled Python and shell scripts
- Data stored in PostgreSQL/PostGIS (vector data), GRASS GIS (raster data)
 - Boundaries, cities, land ownership Transportation networks, Hydrography, other environmental data
 - EPA AirNow Particulates
 - DREAM model outputs

Product Generation

- Two service models are used to generate products:
 - Open Geospatial Consortium Web Map Services (WMS)
 - W3C Simple Object Access Protocol (SOAP)
- WMS services provide images of data, including time-sensitive data (e.g. EPA AirNow particulate data), through the simple WMS URL specification
- The WMS services are provided by a customized build of Minnesota MapServer running as a CGI
 - application, that accesses data stored in GRASS GIS and PostgreSQL/PostGIS.

Product Generation

- The current suite of SOAP services provide three capabilities:
 - Time series components
 - Frame Image URLs (WMS requests)
 - Time series plot (URL for a custom generated PNG file)
 - Geostatistical analysis functions
 - Summarization over irregular regions, represented as a density plot
 - High-quality hardcopy map/document production
 - PDF file generation

Product Delivery

- Product delivery is provided through the standards-based interfaces described previously, and through the demonstration client web interface
- The WMS and SOAP specifications support simple integration of PHAiRS products into external applications, such as the RSVP and SYRIS decision support systems.

Time Series Client-Service Interaction

Density Plot Client-Service Interaction

Demonstration Client Interface

Time Series Interface

Time Series Interface (movie)

Sample Density Plot

Future Plans

- Validation and Verification of regionalized DREAM model
 - Historic (2003-2006) particulate measurements already acquired for 84 AirNow stations in the model region
 - Historic Global Forecast System (GFS) data acquired for 8/05-present
 - Embarking on sequential model runs for comparison with EPA ground measurements
- Develop routine model run and result presentation capabilities
- Develop service metadata (WSDL)
- Work with DSS developers to deploy products into their systems (beta testers)

Acknowledgments

- This work has been funded by the NASA REASoN Program (CA# NNS04AA19A)
- Project Partners
 - University of Arizona
- Collaborating Organizations
 - Sandia National Laboratories
 - ARES Corporation
 - Texas Tech Health Sciences Center

